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For the modified Chen-Gurtin model of a thermoviscoelastic material the consequences of the second law of thermodynamics 
imposing constraints on the full set of relaxation functions describing both the main and the cross effects are obtained. In the 
one-dimensional case the functions form a (3 × 3) matrix and the constraints can be reduced to the condition that the (6 × 6) 
matrix constructed from the Fourier transforms of the symmetric and antisymmetric parts of this matrix should be non-negative. 
The constraints established imply that the instantaneous response matrix must be symmetric. The resulting constraints for the 
relaxation functions are compared with those already known. 

Based on the phenomenological non-equilibrium thermodynamics of complex systems [1-7], an effective 
method of studying the properties of relaxation functions for materials with a memory, which follow 
from the second law of thermodynamics, was proposed in [8, 9]. This method was generalized in [10], 
to the case of the complete system of relaxation functions including functions describing both the main 
and the cross effects. Below we obtain additional thermodynamic constraints for the relaxation functions 
which stipulate new relationships between the cross effects and containing the aforesaid properties as 
a special case. 

A modification put forward by the present authors for the model of thermoviscoelastic media 
developed by Chen and Gurtin in their general thermodynamical theory of materials with memory 
including second-sound effects [ 11] is investigated. This interesting model is undoubtedly very promising 
from the viewpoint of the most adequate description of actual materials. The modification of the model 
under consideration, involving a special choice of independent variables and the introduction of an 
appropriate thermodynamic potential, is used because it enables one to construct a thermodynamically 
consistent linear theory [12] and also because it gives a more compact representation of results. The 
one-dimensional model is considered for simplicity. 

1. N O T A T I O N  A N D  T H E  B A S I C  A S S E R T I O N S  O F  T H E  M O D I F I E D  
C H E N - G U R T I N  T H E O R Y  

Let R be the set of real numbers and let R + be the set of positive real numbers. For any function 
g: R + ~ R we introduce the summary function ~: R + ~ R by 

$ 

~(s) = ~ g0,)a~ (1.1) 
0 

For every time-dependent function:. R ~ R + and any fixed instant t the historyff: R + ~ R o f f  up to 
time t is defined as follows: 

:(s) =f(t - s) (1.2) 

and the summary historyft: R + ---> R off up to t is defined according to (I.i). We denote byHthe Hilbert 
space of measurable functionsf: R + ---> R with finite norm [I" II defined by 

tPrild. Mat Mek~ Vol. 59, No. 2, pp. 280-289, 1995. 
*See also KOLPASHCHIKOV V. L and SCHNIPP A. I., Thermodynamics and models of non~assical media. Preprint No. 9, 
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Ilfll= ~ If(s)l 2 h(s)ds (1.3) 
0 

where h: R + ~ R is a continuous decreasing influence function such that 

~ h(s)sds < 
o 

We set H = { f  ~ H I f e H} and I-1 + = {f E H I f > 0}. For the one-dimensional model under 
consideration, the triple (F(t) > 0, O(t) > 0, G(t)} of time-dependent functions defined at some point 
of the medium, F being the deformation gradient, 0 = 1/T being the inverse absolute temperature and 
G = ~0 /~  its gradient, will be called an admissible process at that point if F and ~ are continuous and 
piecewise smooth, G is piecewise continuous, and all the three functions are bounded. Each admissible 
process defines an admissible state 

K ffi{F(t), O(t), e', O', G'} (1.4) 

of the material under consideration for any fixed time t, where, as can be verified, F(t) ~ R +, O(t) 
R +, F t ~ H +, 0 t ~ H +, G t ~ !t. The corresponding set S = R + x R + x H + x Hwill be called the state 
space. 

In addition to the laws of conservation of momentum and energy, the following constitutive equations, 
given by the four state functions (funetionals) at every point of the material, are necessary for the 
complete description of the material 

S(t) = S (K) ,  e(t) = ~(lq), q(t) = 4(K), rl(t) = ~l(K) (1.5) 

where S is the Piola-Kirchhoff stress, e is the specific internal energy, q is the heat flow, and ~1 is the 
specific entropy. The circumflex accent denotes the corresponding real constitutive state funetionals. 
It will be convenient below to introduce the following thermodynamic potential 

= eO - rl (1.6) 

for which a constitutive equation 

Oft) .-- ~ (A t) (1.7) 

of the same type can be established using (1.5) and (1.6). The set 

{F(t), O(t), G(t); S(O, e(t), q(t), O(t)} 

of seven time-dependent functions defined at some point, the first three of which represent an admiss~le 
process, while the remaining ones are determined by that admissible process according to (1.5) and 
(1.7), will be called a thermodynamic process at that point. 

The functionals in (1.5) and (1.7) are assumed to be continuous and differentiable, and ~ is twice 
differentiable in S. It follows that the partial derivatives 

(1.8) 

exist, and so do the Fr6chet partial derivatives 

S bfA'Xt)=- Xi'(F,O,F',O' + Xt, b-71x=o (1.9) 
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where f, l, g e H, 8m/3(At): H ~ R, m = 1, 2, 3,/3 being any of the functionals, S, ~, ~, ~, 6 .  For 6 
there are also the corresponding second derivatives, for example 

82¢O( At )( f  ,g) (1.10) 

wheref, g, e H, 82~(At): H x H -~ R, / , j  = 1, 2, 3. 
To simplify the notation below, we will introduce the threeMimensional Euclidean space W of elements 

of the form a = {al, a2, a3}, where al, a2, a3 ~ R, as well as the Hiibert space H 3 of vector-valued functions 
F: R + --> R 3 of the form F = {fa, f2,f3}, wherefa,f2,f3 ¢ H. The scalar product and norm in R 3 and H 3 
are defined in the usual way 

A. B - ¢h/~ + a2b 2 +a3b3, IIFII= (llfl112 +llf21l 2 +llJ~ll 2 )~ (1.11) 

Using this notation, we can introduce the total Fr6chet derivative 

8/~(A t )(r') -- ~/~(A t )({fl, f2, f3 }) = 

--=~ 81b(A* )(fl ) + 82P( At )(f2 ) + 83J3( At )(f3 ), 

Ff{f l , f2 , f3}eH3 

2. THE SECOND LAW OF THERMODYNAMICS 

The first three constitutive equations in (1.5) together with the momentum and energy balance 
equations form a closed system of equations, which enables us to describe the thermodynamic processes 
in the materials under consideration, provided that the corresponding boundary conditions are given 
along with the volume forces and heat sources. Any admissible processes for an arbitrarily chosen point 
of the medium can be obtained by solving this system, since the volume forces and heat sources are 
arbitrary. To exclude thermodynamically inadmissible processes the law of thermodynamics should in 
some way restrict the class of constitutive equations. 

In the theory under consideration the second law of thermodynamics is based on the Clansius- 
Duhem inequality, which expresses the requirement that the internal production of entropy o is positive, 
provided that the external mass source of entropy is equal to the mass source of heat r divided by the 
absolute temperature (r/T = rO), and the entropy flow is equal to the heat flux divided by the absolute 
temperature q~ 

o = P/I + div(qO) - pro ;= 0 (2.1) 

where p is the density of the medium and a dot above a symbol will from now on denote the total 
derivative with respect to time. 

Taking into account the energy balance equation 

pk = - d i v q  +pS.~ '+pr  (2.2) 

and using (1.6), we can reduce (2.1) in the one-dimensional case to the form 

-~P+e~+ Osp +lqG>~ 0 (2.3) 
P 

The second law of thermodynamics can be stated as follows. 

Postulate TD. Inequality (2.3) is satisfied for all thermodynamic processes. 
Necessary and sufficient conditions for this postulate to be satisfied are given in the following theorem, 

which is analogous to the corresponding theorem in [11]. 

Theorem CG. Postulate TD is satisfied if and only if the constitutive equations satisfy the following 
relationships 
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O(t) 

,~(^' ) = p~i3,b( ̂ ' )(1 + ), 

~,(K) = 8oo(K ) 

,r~b( K )(1o', ~",-G' }) -< 0 

(2.4) 

Here 1 + ~ H is a constant function equal to unity everywhere in R +. 
We now define an equilibrium state A0 as a state of the following form 

Ao = {F, O, F +, 0 +, 0 + } (2.5) 

where F +, 0, 0 + are constant functions from H and fi  equal, respectively, to F, O and 0 on the whole 
set R +. 

The aim of the study below is to obtain thermodynamic constraints for the linear parts of the first 
three constitutive functions in (1.5) appearing in the momentum and energy transfer equations and 
defined by the first-order Fr6chet derivatives. Introducing the relaxation functions using the Riesz lemma 
on the representation of a linear functional in Hilbert space, we can represent the linear parts of the 
functionals in question by integrals 

5m~n (A0)(f) = 7 Rmn(S)f(s)ds, 
0 

Rm,(**)=0; re,n= 1,2,3 (2.6) 

The prime denotes differentiation and the operators 8,n are defined in (1.9). 
Nine relaxation functions are introduced here. They are analogues of the phenomenological transfer 

coefficients in classical theory. Each of them is named according to the thermodynamic quantity whose 
relaxation it describes and the independent variable whose variation is responsible for the relaxation 
process. For example, Ru is the stress versus the deformation relaxation function, R32 is the heat flux 
versus the temperature relaxation function, etc. 

3. THERMODYNAMICS AND PROPERTIES OF THE RELAXATION 
FUNCTIONS 

The study of the properties of the relaxation functions below is based on a lemma following from 
Theorem CG. The proof of this lemma is omitted here. It is based on expanding the left-hand side of 
the inequality in (2.4) in a functional Taylor series, so it does not differ much from the proofs of similar 
results in [8, 9]. 

Lemma. If Postulate TD is satisfied, ~> has the following property: for any equilibrium state A0 and 
any bounded F = {fl,f2, f3} e H a such that 

the inequality 

a r ~ ^ o × r ' ~ / t ( o )  +ae~(Ao) ( r ' ) f 2 (o ) -  

-81~(^ ,xr ' ,  l ÷)/3 (o) + S2~(ho xr', r) ~ o (3.1) 

is satisfied. Since the diffe~ntial operators ~ and 5 commute, one can use the first three relationships in 
(2.4) and express ~ ,  ~oO, and 830 in (3.1) in terms of S, ~ and ~. 

Moreover, if the following vector-valued functional V is introduced on S 

~(^')-I~1,%,%l={O~(^') ,  ~ (^ ' ) , -~ (A' ) }  (3.2) 

then (3.1) can be reduced to 
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8~(AoXF')F(0) + 82~(A0)(F', F) ~> 0 (3.3) 

We consider two specific choices of F and H 3 satisfying the hypothesis of the lemma 

r, = , c = ( s )  + bS®(s) (3.4) 

r2 = aS~s) + bC®(s) (3.5) 

where 

affi lal ,  a2, a3}E R 3, b={bl ,b2 , /73}¢  R 3 

S.(s) = sin(03s) ~ H, C=(s) = cos(03s) ¢ H, 03 ¢ R + 

Substituting (3.4) and then (3.5) into (3.3), we obtain 

b~(Ao)(-03aS m +03bC.)a +82~(Ao)(-03aS® +03bC m, aC® + b S . ) ~  0 (3.6) 

-8~(A 0)(0~c m + 03bS. ). b + 82~(A0)(cxlC. + 03bS., aSce - bC. ) ~ 0 (3.7) 

Taking into account that the second-order Fr~ehet derivative for a fixed state A0 is a symmetric bilinear 
2 ^ functional on H 3 × H3(i.e. such that 82~(Ao)(F1, F2) = 50(A0)(F2, F2), it can be shown that the terms 

with 82~i in (3.6) and (3.7) are equal to one another with opposite signs. Therefore, when these 
inequalities are added, the terms cancel one another and we get 

8~(A0)(03aS® - tabS.), a + 8~(Ao)(omC. - tdbS.) • b ~< 0 (3.8) 

Representing ~ by the relaxation functions (2.6) and changing to the detailed notation, we can rewrite 
(3.8) on dividing it by 03 > 0 in the form 

3 3 "* 3 3 

Y. ~ a.am S R'm (s)sin(tt~s)ds - ~ ~. anb,~ ~R~ (s)cos(03s)ds + 
nffilm=l 0 s = l m = l  0 

3 3 '~ 3 3 ** 

+ ~'. ~, bnam] R'nm(s)cos(03s)da+ ~, ~. bnb m ~ R~m(s)sin(03s)ds<~ 0 
nflmffil 0 n=lm=l 0 

We introduce the antisymmetric and symmetric parts II II and 11R+,~ II of 1[ R,,m [I 

1 R~= (Ru,-Rmn), l~m=-~(Rn.+R,n,,), n,m=l,2,3 

and the cosine and sine Fourier transforms of R(s) 

RI c (03) = ~Rts)cos(03s)ds, RI, (03) = ~R(s)sin(03s)ds 
0 0 

Using this notation, we can rewrite (3.9) as follows: 

T E (03)a.a,, + 2 Y~ Y (03)bna m + 
nffilmffil j$ a=lm=l ~c 

' ' I 
+ Y. E (03)b~b. ~ 0 

n=lmffil ~$ 

We introduce a new (6 x 6) matrix II II 
r.(03) =-P~L(03)  for n, m = 1, 2, 3 

r~(03) = -R~+_' 3 .-3[ (03) for n, m = 4, 5, 6 
• I $  

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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-R~,_sL(m)  for  n = 1, 2; 3; m = 4, 5, 6 r .  (to) 

-R~'.n-ZL(t0) for n = 4, 5, 6; m = 1, 2, 3 r,=,(o0) 

This symmetric matrix can be represented in the form of a partitioned matrix 

II r~ ( to ) l l=  I":.L,°,I 
(3.14) 

If the six-dimensional vector 

{ ak for k = 1,2,3 

tit = bt_3 [o[ k =4,5,6 (3.15) 

is also introduced, then (3.12) can be rewritten using the above notation as the following quadratic 
form 

6 6 

5". Y. r.m(te),~.fi m ~> 0 (3.16) 
n= lm=l  

for any if,, (n = 1, 2 , . . . ,  6) and co ~> 0. 
This implies that (3.14) must be a non-negative definite matrix. The following theorem has therefore 

been proved. 

Theorem 1. If Postulate TD is satisfied, the matrix ]l r,~(to) II constructed from the relaxation functions 
(2.6) in accordance with (3.10), (3.11) and (3.14) must be non-negative definite. 

A necessary and sufficient condition for the matrix to be non-negative definite is that all its principal 
minors must be non-negative definite. In general, a (6 x 6) matrix has 63 principal minors. However, 
in the case in question the matrix (3.14) contains many repeated terms, as can be seen from its full 
form, which can be obtained from (3.14) by integrating by parts those of its elements which contain 
the sine Fourier transform 

0 -, lc 
(3.17) 

There are therefore just 32 different minors among the principal minors of this matrix. Consequently, 
the above condition that the matrix must be non-negative definite yields 32 inequalities imposing 
constraints upon the relaxation function matrix. The first seven of these inequalities representing the 
minors formed by the elements of the upper left quarter of (3.17) contain only the symmetric part of 
the relaxation function matrix IIR o II and are identical with the inequalities obtained in [10]. The remaining 
25 inequalities are new and impose constraints on the antisymmetric part of the matrix also, giving rise 
to new relationships between the cross effects. 

To state an interesting conclusion which follows from these new constraints we introduce the following 
definition. 

We will call II R0(0) II (i, J = 1, 2, 3) the instantaneous response matrix. It describes the difference 
between the response of the system to an instantaneous (jump-like) variation of the independent 
variables and the response to a quasistationary variation of these variables of the same magnitude. 

Conclusion. The instantaneous response matrix is symmetric, i.e. 
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Ris(O) = Rj,(0), i, j = 1, 2, 3; i < j (3.18) 

To prove this conclusion we will write down the inequalities containing the non-negative definiteness 
conditions for the three second-order principal minors in (3.17) formed by the elements of the rows 
and columns numbered 1 and 5, 1 and 6, and 2 and 6, respectively, reducing the terms containing the 
antisymmetric part of II Ru II to the sine Fourier transform by integration by parts 

[R;7(0)+~e~ (o~)] 2 co 2 R,~lc(o~)R; c ( O ) -  >t o 

i , j =  1,2,3; i < j  (3.19) 

Letting ~ tend to zero in (3.19), by the integrability of the relaxation functions we get 

- (Rq(0))  21>0,  i , j = 1 , 2 , 3 ;  i < j  

It follows that 

R~(0)=0, i , j = 1 , 2 , 3 ;  i < j  

Taking (3.10) into account, this is equivalent to the assertion (3.18) to be proved. 
Here an analogy with Onsager's reciprocity relationships can be seen explicitly. However, unlike the 

usual phenomenological terminology for irreversible processes [13], here these properties follow from 
the irreversibility principle (the positivity of the production of entropy) and do not require any special 
postulate. At the same time one should take into account that the physical meaning of the quantities 
in (3.18) differs from that of Onsager's phenomenological coefficients. 

4. COMPARISON WITH KNOWN RESULTS 

It is interesting to compare the constraints obtained here for the relaxation functions with other known 
results, for example, with the properties of the stress versus deformation relaxation function G described 
in [2, Chapter 6]. To do this, it is convenient to represent (3.16) in a slightly different form. In addition 

3 to the real Euclidean space R ,  we introduce the three-dimensional complex Euclidean space C 3 as 
well as the space L(R 3) of linear transformations of R 3 into itself (real matrices) and the space L(C 3) 

3 of linear transformations of C into itself (complex matrices). Then the relaxation function matrix 
+ 3 II II can be considered as a function from R to L(R ), which will be denoted by R. We introduce a 

new matrix-valued function R defined on the whole set R in terms of R as follows: 

- JR(s),  s ~> 0 (4.1) 
R(s) = ~R'(-s), s < 0 

The Fourier transform of R IF: R ---> L(C 3) can be defined by 

fil F (o~) = S fi(s) e-i°~ds (4.2) 
- o o  

The Fourier transforms of the derivatives of R,,m in (3.12) can be reduced to the Fourier transforms of 
Rnm by integration by parts. Using the matrix notation introduced above and taking (3.10) into account, 
inequality (3.12) transformed in this way or the equivalent inequality (3.9) can be written in the form 

¢oa. RIc(O))a+b.(RIs(m)o~-Nrls(o~)o~+R(O)-Rr(o)).a+o~RIc(O~).b>~O (4.3) 

Since Rr(0) = R(0) by Theorem 1 and ¢0 t> 0 by assumption, the following assertion can easily be 
deduced. 

Assertion 1. The constraints for the relaxation functions stated in Theorem 1 are satisfied if and only 
if the matrix-valued function R satisfies the conditions 

fi(0) = fir(0), c'RIF (¢O)e t> 0 (4.4) 
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for all e ~ C 3 and co e R (the asterisk denotes complex conjugation). 
It is easy to establish the equivalence of (4.4) and (4.3) setting e = a + tb and separating the real 

and imaginary parts in the second relationship in (4.4). 
At the same time, by Bochner's theorem generalized to the case of matrix-valued functions,? the 

second relationship in (4.4) is equivalent to the condition 

T t  

j ~ r(t). R(t- s)r(s)dsdt >~ 0 (4.5) 
00 

for any locally square integrable F: R + ---) R 3 and T > 0. 
This condition is equivalent to the so-called dissipativity condition for R(s) considered in [2] for G(s). 

We remark, however, that the relaxation functions have been introduced here in a slightly different 
way, since it was assumed that Run(**) = 0. For example, the stress versus deformation relaxation function 
Rn(s) introduced here corresponds to the function G(s) - CK**) in Chapter 6 of [2] and R°1 - Rn(O), 
where R°1 = O~1(Ao), corresponds to G(**). We can also draw a wider analogy by comparing the matrix- 
valued stress versus deformation relaxation function G(s) considered in [2] with the matrix-valued 
relaxation function 

R ( s )  = R ° + R(s) (4.6) 

representing all forms of relaxation. Here 

83~I(A0)(I +) 

~F~2(A0) ~F~3(A0) 
t)O~/2(A0) ~0~f3(A0) 
83~t2(A0)(l +) 83~3(A0)(I +) 

(4.7) 

and the functionals Wn are defined as in (2.6). 
Applying the differentiation operators 30, ~F, 83(1+) to the first three relationships in (2.4), it can be 

shown that 

~F~/2(A0)-- aO~tl(A0), t)F~/3(A0) ffi 83~/I(A0)(I +) 

~o~/3(Ao) = 83~/2(Ao)(1 +) 

i.e. R ° is a symmetric matrix. 
Then, since the relationships (3.18) are satisfied, the matrix R(0) will also be symmetric 

R ( 0 )  = RT(0)  (4.8) 

Taking (4.6) into account, constraints (4.8) and (4.5) are equivalent to the condition of "compatibility 
with thermodynamics" for R(s) stated for G(s) in assertion 2b in [2, Chapter 6]. We note that, using 
the same argument in [2], one can prove the following properties of the matrix-valued function R starting 
from (4.5) 

R(0)- R(s) ~> 0 

and 

a ( o )  I-- o, - R'(o) ~ 0 (4.9) 

where the inequality signs means that the corresponding matrices are non-negative definite. 
The properties of the relaxation functions of type (4.9) have important appfications in the study of 

wave propagation and also in the proof of the theorem on the uniqueness of solutions of the system 
of linear field equations of combined thermoviscoelasticity. 

?This generalization can be found, for example, in KOLPASHCHIKOV V. L. and SCHNIPP A. I., Linear thermodynamical 
systems with a memory: a necessary and sufficient condition for the existence of a non-equilibrium thermodynamical potential. 
Preprint No. 37, Inst. Teplomassoobmena Akad. Nauk. BSSR, Minsk, 1987. 
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Note that, unlike the results in [2], these assertions are related to the complete system of relaxation 
functions describing all three types of relaxation, including cross effects. Moreover, they are obtained 
for the non-linear constitutive funetionals, the linear parts of which are represented by the relaxation 
functions. 
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